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LElTER TO THE EDITOR 

Hall effect on multifractality of current distribution at 
percolation threshold 

Takashi Nagatani 
College of Engineering, Shizuaka University, Hamamatsu 432, Japan 

Received 2 June 1992 

Abstract. We investigate the scaling behaviour of the current distribution in the random 
resistor network at the percolation threshold under a weak magnetic field. A self-dual 
fractal model is used to mimic the two-dimensional percolation cluster at the threshold. 
The infinite set of exponents is calculated for the moments of the Ohmic and Hall current 
distribution on the regular fractal. The dependence of the multifractality an the magnetic 
field by the Hall effect is shown. It is found that the Ohmic and Hall current distribution 
shows a characteristic multifractality under a magnetic field. 

Recently, there has been increasing interest in the critical behaviour of random resistor 
networks. It has been found that electrical properties of self-similar resistor networks 
should be characterized by an infinite set of exponents [l-31. The multifractal structure 
of the current distribution has been studied [4-71. Specific members of families of 
fractal dimensions represent the geometrical and physical substructures of the underly- 
ing self-similar structure. Very recently, breakdown of multifractal behaviour in a range 
of negative 'moments has also attracted much attention [8-121. The breakdown 
phenomenon is due to minimum current decreasing faster than a power law. 

The Hall effect has been used extensively to investigate the metal-insulator transition 
in a variety of disordered systems. An effective medium theory, scaling theories and 
a simulation approach have been used to discuss the properties of the Hall effect in 
disordered composite conductors [13-17]. The self-dual fractal model has been pro- 
posed to study the scaling properties of the Ohmic and Hall conductivities [18]. The 
scaling behaviour of the magneto-resistance has also been calculated by using the dual 
fractal lattice [19]. However, there is an open question as to whether or not the 
multifractality of the Ohmic and Hall current distribution depends on the magnetic field. 

In this letter, we study the dependence of the scaling behaviour of the Ohmic and 
Hall current distribution on the magnetic field. In order to mimic the infinite cluster 
at the percolation threshold, we use the self-dual fractal model proposed to study the 
scaling properties of the Ohmic and Hall conductivities. The self-dual fractal model 
is a modified variant of the Mandelbrot-Given curve with the self-duality property 
[ 18,201. Figure 1 shows the generator of the self-dual fractal. The model consists of the 
two branching Koch curves of which the fractal dimensions of the infinite cluster and 
its bwkhane igree with !hose ofthe Mande!hmt-Given curve [20!. The Mande!bm!- 
Given model possesses geometric and topological properties very close to the infinite 
cluster at the percolation threshold. The dual is represented by the broken line. The 
two fractal lattices, being self-dual with each other and indicated by the full and broken 
lines, are electrically unconnected in the absence of a magnetic field H. In the presence 
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Figure 1. Generator of the self-dual fraaal for the infinite cluster. The dual is represented 
by the broken line. The two lattices indicated by the full and broken lines are electrically 
unwnneaed for H = O  but are correlated with each other in the presence of a magnetic 
field H. 

of a magnetic field H taken to lie along the z axis, a Hall current will flow through a 
conductor in the x (or y )  direction that depends on its Hall conductance and on the 
voltage across the y (or x) conductor of the same doublet. Then, the two fractal lattices 
are correlated with each other by virtue of the unconnected doublets in the presence 
of a magnetic field H. 

We consider the current conservation. In  addition to the Ohmic conductance ua 
of each member a of the unit element, there is also a Hall conductance Am and Hall 
coefficient R., connected by 

for a l H  
for a 11 H. 

The current J. is given by 

J, = un Va - A, V o x ,  (2) 
where vaxn is the vo!trge zcross the &E! cnr?dnctcr cc the SlmP onit e!ement--?he 
one that is perpendicular to both a and H. Current conservation at the internal point 
i leads to the following equation for the potentials y :  

zug(x-Y)+ A U V , j X H = O  (3) 
j U X H  

where the first summation over j indicates the sum over the nearest-neighbour sites to 
i, and the second summation over x H represents the sum over the dual conductors 
of the same unit element as the ij bond. We calculate the Ohmic and Hall currents 
flowing through each bond on the generator in figure 1. The currents on the bonds 
(labelled by 1-8) are given by 

j , = i % ( V ~ -  VA)-(&)~A(VC- VD) 

_ -  i, =&U( V, - V,) --EA( V, - V,) 
j, =id V B  - v,) - & A A (  vc - VD) 

j4 = j 3  is =.is j6=jl 

3 4  

I 

j, = 0 j , = O  

(4) 
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where we omit the terms of a magnetic field H higher than the first-order term. Similarly, 
the currents on the dual lattice are calculated. We derive the multifractal exponents 
of the current distribution by using the currents (4) obtained above. Without generality, 
we set (VB - V,) = ( VC - V,) = 1. Each bond of the generator can be characterized by 
the fraction of the total Ohmic current flowing through it, i.e. j'=j/jtOtOhmis. The 
moments of the current distribution and corresponding exponent ( ( q )  can be defined 
by 

z(q)lc"4;.L"''. i ( 5 )  

The currents on the fractal lattice are given by a multiplicative process of the currents 
within the generator. By using equation (4), the exponent ( ( q )  is given by 

where (ohmic(4) is the exponent in the absence of a magnetic field H. In the absence 
of a magnetic field H, the exponents (ohmic(0), lohmic(2) and <oh,i,(m) give respectively 
the exponents Lohmic(0) = log 6/log 3 = db (db is the fractal dimension of the backbone), 
tohmic(2) = log$/log 3 = t / v  ( f  is the exponent of Ohmic conductivity) and lohmis(m) = 
lug Li rug J - ii Y I Y 15 LIIC C A ~ U I I C I I L  VI curreiauun iengrn) UI oacwune, unmic cunuuc- 
tivity and cutting bonds [18]. In the presence of a magnetic field H, the exponents 
((4) change from lOhmic(q) to equation ( 6 )  except for the exponent ((0) = db. Figure 
2 shows the plot of ( ( q )  against q for various values of A / u .  The exponents ( ( q )  
deviate largely from the LOhmic(q) for large 141 or large lA/uI. For a negative A / u ,  the 
exponent ((4) increases with q for q > 0. Figure 3 shows the dependence of the typical 
exponents ((O), ((2) and ((4) on the magnetic field H ( H = A ) .  For a negative value 
of A / u ,  the line of ((2) intersects with that of ((4), and ((2) is smaller than ((4). The 
magnetic field has a strong effect on the multifractality of the current distribution. 

In summary, we study the scaling behaviour of the current distribution on the 
self-dual fractal under the magnetic field. We then calculate the multifractality of the 
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Figore 2. The plots of the exponents L(q) of the moments of the Ohmic and Hall current 
distribution against q far various values of A I m  
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Figure 3. The plots of the typical exponents c(O), ((2) and ((4) against AIS ( A  = H). 

Ohmic and Hall current distribution. We find that the magnetic field has an important 
effect on the multifractality by the Hall effect. 
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